Survival prognosis in plantations of Pinus caribaea Morelet var. caribaea Barrett & Golfari

Main Article Content

Ouorou Ganni Mariel Guera
José Antônio Aleixo da Silva
Rinaldo Luiz Caraciolo Ferreira
Daniel Álvarez Lazo
Héctor Barrero Medel

Abstract

The present study was carried out with the objective of obtaining regression equations and Artificial Neural Networks (ANNs) for the prognosis of Pinus caribaea var. caribaea survival in Macurije Forest Company, province of Pinar del Río - Cuba. The data used in the modeling comes from the measurement of the variables age (years) and survival (density) in circular permanent plots of 500 m² established in P. caribaea var. caribaea plantations. The study was divided into three stages: i) Adjustment of survival traditional regression models; ii) Training of ANNs for survival prognosis, including categorical variables «site» and «Basic Units of Forest Production»; iii) Comparison of regression equations performance with those of ANNs in survival prognosis. The best models and ANNs were selected based on: adjusted determination coefficient - R2aj (%), square root of the mean square error - RMSE (%) and residue distribution analysis. The evaluation of the models goodness of fit also included the verification of the assumptions of normality, homocedasticity and absence of serial autocorrelation in the residues by Kolmogorov-Smirnov, White and Durbin-Watson tests, respectively. The model of Pienaar and Shiver (1981) turned out to be the best fit in survival prognosis. The ANN MLP 13-10-1 was the one with the best generalization capacity and presented a performance similar to that of Pienaar and Shiver equation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Guera, O. G. M., Silva, J. A. A. da, Ferreira, R. L. C., Álvarez Lazo, D., & Barrero Medel, H. (2018). Survival prognosis in plantations of Pinus caribaea Morelet var. caribaea Barrett & Golfari. Cuban Journal of Forest Science, 6(1), 15–30. Retrieved from https://cfores.upr.edu.cu/index.php/cfores/article/view/299
Section
Scientific articles
Author Biographies

Ouorou Ganni Mariel Guera, Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Ciência Florestal (DCFL), Laboratório de Biometria e Manejo Florestal (LBMF)

Ingeniero Forestal, Doctor en Ciencias Forestales

José Antônio Aleixo da Silva, Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Ciência Florestal (DCFL), Laboratório de Biometria e Manejo Florestal (LBMF)

Ingeniero Forestal

Rinaldo Luiz Caraciolo Ferreira, Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Ciência Florestal (DCFL), Laboratório de Biometria e Manejo Florestal (LBMF)

Ingeniero Forestal

Daniel Álvarez Lazo, Universidad de Pinar del Río "Hermanos Saiz Montes de Oca" Facultad de Ciencias Forestales y Agropecuaria Departamento Forestal

Ingeniero Forestal, Doctor en Ciencias Forestales

Héctor Barrero Medel, Universidad de Pinar del Río "Hermanos Saiz Montes de Oca", Facultad de Ciencias Forestales y Agropecuaria Departamento Forestal

Ingeniero Forestal, Doctor en Ciencias Forestales

References

ALEIXO DA SILVA, J.A., 2015. Conceitos e princípios básicos de modelagem matemática em ciências florestais. Anais da Academia Pernambucana de Ciência Agronômica, vol. 11/12, pp. 195-215.

BIGLER, C. y BUGMANN, H., 2003. Growth-dependent tree mortality models based on tree rings. Canadian Journal of Forest Research, vol. 33 (2), pp. 210-221. DOI www.nrcresearchpress.com/doi/pdf/10.1139/x02-180.

BUCHMAN, R.G., PEDERSON, S.P. y WALTERS, N.R., 1983. A tree survival model with application to species of the Great Lakes region. Canadian Journal of Forest Research, vol. 13, pp. 601-608.

CAMPOS, J.C.C. y LEITE, H.G., 2017. Mensuração florestal: perguntas e respostas. 5a ed. S.l.: Viçosa: Editora UFV.

CHAPMAN, D.., 1961. Statistical problems in population dynamics. Proceedings of the fourth Berkeley symposium on mathematical statistics and probability. USA: Berkeley, CA, University of California Press, pp. 153-186.

CLUTTER, J.L. et al., 1983. Timber management: a quantitative approach [en línea]. 1sted. New York: John Wiley & Sons, 1983. Disponible en: https://www.amazon.com/Timber-Management-Quantitative-Jerome-Clutter/dp/0894647474

CLUTTER, J.L. y JONES, E.., 1980. Prediction of growth after thinning in old-field slash pine plantation [en línea]. S.l.: Res. Pap. SE-217. Asheville, NC: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station. Disponible en: http://agris.fao.org/agris-search/search.do?recordID=US8044500

GLOVER, G.. y HOLL, J.., 1979. A basal area ratio predictor of loblolly pine plantation mortality. Forest Science, vol. 25 (2), pp. 275-282.

GUAN, BIING, T. y GERTNER, G., 1991. Modeling red pine tree survival with an artificial neural network. Forest Science, vol. 37 (5), pp. 14291440.

HAMILTON, D.A., 1974. Event probabilities estimated by regression [en línea]. INT-152. Utah, USA: USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah. Research Paper. Disponible en: https://www.biodiversitylibrary.org/bibliography/68708#/summary , https://doi.org/10.5962/bhl.title.68708 , https://www.biodiversitylibrary.org/bibliography/68708#/details.

HAMILTON, D.A., 1986. A logistic model of mortality in thinned and unthinned mixed conifer stands of Northern Idaho. Forest Science, vol. 32 (4), pp. 9891000.

HANN, D.W., 1980. Development and evaluation of an even- and uneven-aged ponderosa pine [en línea]. Arizona, USA: Arizona Fescue stand simulator. Ogden: Forest Service/Intermountain Forest and Range Experiment Station. Disponible en: https://archive.org/details/developmentevalu267hann.

K VANCLAY, J., 1994. Modelling forest growth and yield/ : applications to mixed tropical forests [en línea]. S.l.: Wallingford: CAB International UK. Disponible en: https://epubs.scu.edu.au/cgi/viewcontent.cgi?article=1538&context=esm_pubs.

L KING, S., BENNETT, K.P. y LIST, S., 2000. Modelling non-catastrophic individual tree mortality using logistic regression, neural networks, and support vector methods. Computers and Electronics in Agriculture, vol. 27, pp. 401-406.

LEE, Y., 1971. Predicting mortality for even-aged stands of lodgepole pine. Forestry Chronicle, vol. 47(1), pp. 29-32.

LORIMER, C.G., DAHIR, S.. y NORDHEIM, E.., 2001. Tree mortality and longevity in mature and old-growth hemlockhardwood forests. Journal of Ecology, vol. 89, pp. 960-971. DOI http://www.nrcresearchpress.com/doi/abs/10.1139/X10-14.

MALEKI, K. y KIVISTE, A., 2016. Individual tree mortality of silver birch (Betula pendula Roth) in Estonia. iForest, vol. 9, pp. 643-651.

PIENAAR, L.V. y SHIVER, B.D., 1981. Survival functions for site prepared slash pine plantations in the flat woods of Georgia Northern Florida. Southern Jour. Forestry, vol. 5 (2), pp. 59-62.

RICHARDS, F.J., 1959. A flexible growth function for empirical use. Journal of Experimental Botany, vol. 10, pp. 290-300.

SANQUETTA, C.R., 1990. Predição da sobrevivência em reflorestamentos de Pinus elliottii Engelm [en línea]. Tesis de Maestría para la obtención del título de Máster en Ingeniería Forestal. Brasil, Curitiba: Universidade Federal do Paraná. Disponible en: https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=305301&biblioteca=vazio&busca=autoria:%

SANQUETTA,%20%20C.%20R.%22&qFacets=autoria:%22SANQUETTA,%20%20C.%20R.%22&sort=&paginacao=t&paginaAtual=1.

SILVA, J.A.A. DA, 1986. Dynamics of stand structure in fertilized slash pine plantations [en línea]. Georgia Athens, USA: University of Georgia. Disponible en: https://books.google.com.cu/books/about/Dynamics_of_Stand_Structure_in_Fertilize.html?id=6Y5TNwAACAAJ&redir_esc=y.

VANCLAY, J.K., 1991. Mortality functions for north Queensland rain forests. Journal of Tropical Forest Science, vol. 4 (1), pp. 15-36.

Most read articles by the same author(s)

<< < 1 2