Resposta fotossintética de Guadua angustifolia Kunth e Bambusa vulgaris Schrad. ex-J.C. Wendl. em diferentes intensidades de luz

##plugins.themes.bootstrap3.article.main##

Diego Ureta-Leones
Yasiel Artega-Crespo
Yudel García-Quintana
Katheryn Arellano-Reinoso

Resumo

Estudos da resposta fotossintética a diversas intensidades luminosas facilitam o entendimento da fisiologia vegetal, otimizam o manejo e o uso sustentável das espécies. O objetivo da pesquisa foi avaliar a resposta fotossintética de G. angustifolia e B. vulgaris a diferentes intensidades luminosas. As medidas de assimilação fotossintética foram realizadas utilizando um sistema portátil iFL - LCpro-SD. O ponto de compensação (% U ) foi determinado usando três curvas A/Ci sob três níveis diferentes de intensidade de luz. A avaliação da resposta fotossintética ao aumento da intensidade luminosa foi de 25 a 1800 PPFD µmol m-2s-1. G. angustifolia apresentou % U de 73,9 µmol CO, m{ ²s{ ¹, indicando maior eficiência na captura de carbono em concentrações mais baixas em comparação com B. vulgaris, que apresentou % U de 88,1 µmol CO, m{ ²s{ ¹. Além disso, G. angustifolia exibiu menor taxa de respiração diurna (Rd) (0,33 µmol CO, m{ ²s{ ¹), o que otimiza sua eficiência energética, enquanto B. vulgaris apresentou maior Rd (1,08 µmol CO, m{ ²s{ ¹), o que implica maior consumo de energia em condições de baixa intensidade luminosa. G. angustifolia não apresentou fotoinibição, pois sua taxa de assimilação fotossintética aumentou continuamente com a luz. Em contraste, B. vulgaris experimentou fotoinibição de 700 µmol m{ ²s{ ¹ PPFD. Essas descobertas mostram que G. angustifolia está melhor adaptada para capturar carbono em condições de baixas concentrações de CO, e altas intensidades luminosas, enquanto B. vulgaris parece se adaptar melhor a ambientes com maiores concentrações de CO.

Downloads

Não há dados estatísticos.

##plugins.themes.bootstrap3.article.details##

Como Citar
Ureta-Leones, D., Artega-Crespo, Y., García-Quintana, Y., & Arellano-Reinoso, K. (2024). Resposta fotossintética de Guadua angustifolia Kunth e Bambusa vulgaris Schrad. ex-J.C. Wendl. em diferentes intensidades de luz . Jornal Cubano De Ciências Florestais, 12(3), e869. Obtido de https://cfores.upr.edu.cu/index.php/cfores/article/view/869
Secção
Artículos científicos

Referências

AGUIRRE-CADENA, J.F., RAMÍREZ-VALVERDE, B., CADENA-IÑIGUEZ, J., JUÁREZ-SÁNCHEZ, J.P., CASO-BARRERA, L., MARTÍNEZ-CARRERA, D., AGUIRRE-CADENA, J.F., RAMÍREZ-VALVERDE, B., CADENA-IÑIGUEZ, J., JUÁREZ-SÁNCHEZ, J.P., CASO-BARRERA, L. y MARTÍNEZ-CARRERA, D., 2018. Biomasa y carbono en Guadua angustifolia y Bambusa oldhamii en dos comunidades de la sierra Nororiental de Puebla, México. Revista de Biología Tropical [en línea], vol. 66, no. 4, [consulta: 31 agosto 2024]. ISSN 0034-7744. DOI 10.15517/RBT.V66I4.33364. Disponible en: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442018000401701&lng=en&nrm=iso&tlng=es.

ASANTE, K.O.H., AKOTO, D.S., DERKYI, N.S.A. y ABUGRE, S., 2024. Advancing circular economy for the growth, root development and elemental characteristics of bamboo (Bambusa vulgaris) on galamsey-degraded soil. Advances in Bamboo Science, vol. 6, ISSN 2773-1391. DOI 10.1016/J.BAMBOO.2023.100054.

ÁVILA-LOVERA, E. y TEZARA, W., 2018. Water-use efficiency is higher in green stems than in leaves of a tropical tree species. Trees - Structure and Function [en línea], vol. 32, no. 6, [consulta: 31 agosto 2024]. ISSN 09311890. DOI 10.1007/S00468-018-1732-X/TABLES/3. Disponible en: https://link.springer.com/article/10.1007/s00468-018-1732-x.

AZCÓN BIETO, J., FLECK BOU, I., ARANDA, X. y GÓMEZ CASANOVAS, N., 2008. Fotosíntesis, factores ambientales y cambio climático. Fundamentos de fisiología vegetal, 2008, ISBN 978-84-481-5168-3, págs. 247-263 [en línea], vol. Primera edición, [consulta: 22 septiembre 2024]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6380399.

BÖGELEIN, R., HASSDENTEUFEL, M., THOMAS, F.M. y WERNER, W., 2012. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech. Plant, Cell & Environment [en línea], vol. 35, no. 7, [consulta: 22 septiembre 2024]. ISSN 1365-3040. DOI 10.1111/J.1365-3040.2012.02486.X. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2012.02486.x.

CAO, Y., LI, J., LI, S. y ZHOU, B., 2024. The Effects of Long-Term Precipitation Exclusion on Leaf Photosynthetic Traits, Stomatal Conductance, and Water Use Efficiency in Phyllostachys edulis. Forests 2024, Vol. 15, Page 849 [en línea], vol. 15, no. 5, [consulta: 31 agosto 2024]. ISSN 1999-4907. DOI 10.3390/F15050849. Disponible en: https://www.mdpi.com/1999-4907/15/5/849/htm.

COCOZZA, C., DE MIGUEL, M., PŠIDOVÁ, E., DITMAROVÁ, L., MARINO, S., MAIURO, L., ALVINO, A., CZAJKOWSKI, T., BOLTE, A. y TOGNETTI, R., 2016. Variation in ecophysiological traits and drought tolerance of beech (Fagus sylvatica L.) seedlings from different populations. Frontiers in Plant Science, vol. 7, ISSN 1664462X. DOI 10.3389/FPLS.2016.00886/FULL.

DARYAEI, A., SOHRABI, H. y PUERTA-PIÑERO, C., 2019. How does light availability affect the aboveground biomass allocation and leaf morphology of saplings in temperate mixed deciduous forests? New Forests [en línea], vol. 50, no. 3, [consulta: 31 agosto 2024]. ISSN 15735095. DOI 10.1007/S11056-018-9666-0/TABLES/4. Disponible en: https://link.springer.com/article/10.1007/s11056-018-9666-0.

DEMMIG-ADAMS, B. y ADAMS, W.W., 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, vol. 43, no. 1, ISSN 10402519. DOI 10.1146/ANNUREV.PP.43.060192.003123/CITE/REFWORKS.

DÍAZ, R.G., GONZÁLEZ-MARTÍNEZ, C. y PÉREZ, C., 2021. La guadua (Guadua angustifolia) Kunth: El oro verde por descubrir. [en línea], [consulta: 31 agosto 2024]. Disponible en: https://repository.uniminuto.edu/handle/10656/13238.

GENTY, B., BRIANTAIS, J.M. y BAKER, N.R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 990, no. 1, ISSN 0304-4165. DOI 10.1016/S0304-4165(89)80016-9.

GHASHGHAIE, J., BADECK, F.W., LANIGAN, G., NOGUÉS, S., TCHERKEZ, G., DELÉENS, E., CORNIC, G. y GRIFFITHS, H., 2003. Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews [en línea], vol. 2, no. 1-2, [consulta: 22 septiembre 2024]. ISSN 15687767. DOI 10.1023/B:PHYT.0000004326.00711.CA/METRICS. Disponible en: https://link.springer.com/article/10.1023/B:PHYT.0000004326.00711.ca.

KIEFFER, C., KAUR, N., LI, J., MATAMALA, R., FAY, P.A. y HUI, D., 2024. Photosynthetic responses of switchgrass to light and CO2 under different precipitation treatments. GCB Bioenergy [en línea], vol. 16, no. 8, [consulta: 14 septiembre 2024]. ISSN 1757-1707. DOI 10.1111/GCBB.13138. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.13138.

KULSIRILAK, N., AMPORNPITAK, R., KASIKAM, N. y TOR-NGERN, P., 2024. Investigating leaf gas exchanges of common trees in two urban parks with different periods of establishment in Bangkok, Thailand. Tropical Ecology [en línea], vol. 65, no. 2, [consulta: 31 agosto 2024]. ISSN 26618982. DOI 10.1007/S42965-024-00343-Y/METRICS. Disponible en: https://link.springer.com/article/10.1007/s42965-024 -00343-y.

LAISK, A.K., 1977. Kinetics of photosynthesis and photorespiration of C3 in plants. ,

LIU, J. y VAN IERSEL, M.W., 2021. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Frontiers in Plant Science [en línea], vol. 12, [consulta: 31 agosto 2024]. ISSN 1664462X. DOI 10.3389/FPLS.2021.619987/BIBTEX. Disponible en: www.frontiersin.org.

OROZCO GUTIÉRREZ, G. y CESAR DE LIRA FUENTES, R., 2020. Elaboración de biocarbón para el aprovechamiento de residuos proveniente de las podas de bambú (Guadua angustifolia). revistaremaeitvo.mx [en línea], vol. 7, no. 1, [consulta: 31 agosto 2024]. Disponible en: https://revistaremaeitvo.mx/index.php/remae/article/download/41/34.

PIEDRAHÍTA, D., VÁSQUEZ, V., … L.T.-J. of S. y 2019, undefined, 2019. Evaluación y planificación de sistemas agroforestales sustentables de cacao (Theobroma cacao L.) y bambú (Guadua angustifolia K.), Montalvo, Ecuador. dialnet.unirioja.es [en línea], vol. 4, [consulta: 31 agosto 2024]. DOI 10.5281/zenodo.3473533. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7368042.

RALPH, P.J. y GADEMANN, R., 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany, vol. 82, no. 3, ISSN 0304-3770. DOI 10.1016/J.AQUABOT.2005.02.006.

SAPUYES, E., OSORIO, J., TAKEUCHI, C., DUARTE, M. y ERAZO, W., 2018. Resistencia y elasticidad a la flexión de la guadua angustifolia Kunth de Pitalito, Huila. Revista de Investigación [en línea], vol. 11, no. 1, [consulta: 31 agosto 2024]. ISSN 2590-6062. DOI 10.29097/2011-639X.182. Disponible en: https://revistas.uamerica.edu.co/index.php/rinv/article/view/182.

SCHMIEGE, S.C., SHARKEY, T.D., WALKER, B., HAMMER, J. y WAY, D.A., 2023. Laisk measurements in the nonsteady state: Tests in plants exposed to warming and variable CO2 concentrations. Plant Physiology [en línea], vol. 193, no. 2, [consulta: 3 septiembre 2024]. ISSN 0032-0889. DOI 10.1093/PLPHYS/KIAD305. Disponible en: https://dx.doi.org/10.1093/plphys/kiad305.

SHAO, H.B., CHU, L.Y., JALEEL, C.A., MANIVANNAN, P., PANNEERSELVAM, R. y SHAO, M.A., 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, vol. 29, no. 2, ISSN 07388551. DOI 10.1080/07388550902869792.

STOJANOVIÆ, M., JOCHER, G., KOWALSKA, N., SZATNIEWSKA, J., ZAVADILOVÁ, I., URBAN, O., ÈÁSLAVSKÝ, J., HORÁÈEK, P., ACOSTA, M., PAVELKA, M. y MARSHALL, J.D., 2024. Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest. Tree Physiology [en línea], vol. 44, no. 7, [consulta: 31 agosto 2024]. ISSN 17584469. DOI 10.1093/TREEPHYS/TPAE064. Disponible en: https://dx.doi.org/10.1093/treephys/tpae064.

SU, S., JIN, N. y WEI, X., 2024. Effects of thinning on the understory light environment of different stands and the photosynthetic performance and growth of the reforestation species Phoebe bournei. Journal of Forestry Research [en línea], vol. 35, no. 1, [consulta: 31 agosto 2024]. ISSN 19930607. DOI 10.1007/S11676-023-01651-0/FIGURES/7. Disponible en: https://link.springer.com/article/10.1007/s11676-023-01651-0.

XU, Y., DU, H., MAO, F., LI, X., ZHOU, G., HUANG, Z., GUO, K., ZHANG, M., LUO, X., CHEN, C. y ZHAO, Y., 2024. Effects of chlorophyll fluorescence on environment and gross primary productivity of moso bamboo during the leaf-expansion stage. Journal of Environmental Management, vol. 360, ISSN 0301-4797. DOI 10.1016/J.JENVMAN.2024.121185.

YANG, X., XU, H., SHAO, L., LI, T., WANG, Y. y WANG, R., 2018. Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environmental and Experimental Botany, vol. 150, ISSN 0098-8472. DOI 10.1016/J.ENVEXPBOT.2018.03.013.

YE, Z., SUGGETT, D., ROBAKOWSKI, P., PHYTOLOGIST, H.K.-N. y 2013, undefined, 2013. A mechanistic model for the photosynthesislight response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. Wiley Online LibraryZP Ye, DJ Suggett, P Robakowski, HJ KangNew Phytologist, 2013•Wiley Online Library [en línea], vol. 199, no. 1, [consulta: 22 septiembre 2024]. DOI 10.1111/nph.12242. Disponible en: https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.12242.

ZHANG, X., TONG, C., FANG, D., MEI, T. y LI, Y., 2023. Different hydraulic and photosynthetic responses to summer drought between newly sprouted and established Moso bamboo culms. Frontiers in Plant Science, vol. 14, ISSN 1664462X. DOI 10.3389/FPLS.2023.1252862/BIBTEX.

ZHANG, Y. y YE, A., 2021. Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP products. Science of The Total Environment, vol. 783, ISSN 0048-9697. DOI 10.1016/J.SCITOTENV.2021.146965.