The Modeling of diameter structures with the Log-Logistic function in the natural forest of Durango, México Modeling of diameter structures with the Log-Logistic function in the natural forest of Durango, México

Main Article Content

Sacramento Corral-Rivas
Omar Martínez-Ruíz
Juan Abel Nájera-Luna
Friday Nwabueze Ogana
José Javier Corral-Rivas

Abstract

Diametric distribution models are useful tools for predicting growth and yield of forest stands and planning sustainable forest management activities. The objective of this work was to analyze the fitting capacity of the Log-Logistic probability density function through a parameter estimator based on percentiles and to evaluate the precision of two modeling alternatives of diameter distributions of natural stands in the northwestern of Durango state. Six percentile estimators were evaluated and compared with the maximum likelihood approach based on the performance of the Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramér-Von Mises (W2) statistics. For the modeling of the diametric distribution, the graphical and numerical behavior of the prediction (PPM) and parameter recovery (PRM) methods was evaluated with the mean bias (SM) and mean absolute error (EMA). The best parameter estimator resulted from the diameter that accumulates the 25th and 79th percentiles, considering the percentage of stands where it was more accurate in terms of the KS, AD and W2, as well as its performance with respect to maximum likelihood approach. The modeling of the number of trees per diameter class with the PRM and PPM approaches proved to have similar accuracy from the measurement of quadratic mean diameter, basal area per hectare, height and dominant diameter. This work contributes significantly to providing a tool for easy application in growth models developed for natural forests of the Sierra Madre Occidental in Mexico.

Downloads

Article Details

How to Cite
Corral-Rivas, S., Martínez-Ruíz, O., Nájera-Luna, J. A., Ogana, F. N., & Corral-Rivas, J. J. (2025). The Modeling of diameter structures with the Log-Logistic function in the natural forest of Durango, México: Modeling of diameter structures with the Log-Logistic function in the natural forest of Durango, México. Revista Cubana De Ciencias Forestales, 13(2), e873. Retrieved from https://cfores.upr.edu.cu/index.php/cfores/article/view/873
Section
Scientific articles

References

CAO, Q.V., 2004. Predicting Parameters of a Weibull Function for Modeling Diameter Distribution. ForestScience [En línea]. Vol. 50, n.° 5, pp. 682–685 [Consulta: 21 de noviembre de 2024]. ISSN 1938-3738. DOI: 10.1093/forestscience/50.5.682. Disponible en: https://academic.oup.com/forestscience/article/50/5/682/4617271

CLUTTER, J.L., FORTSON, J.C., PIENAAR, L.V., BRISTER, G.H., y BAILEY, R.L., 1983. Timber Management: A Quantitative Approach. New York, John Wiley & Sons. pp. 333. ISBN 0471029610.

COMISIÓN NACIONAL FORESTAL (CONAFOR), 2013. Bosques, cambio climático y REDD+ en México. Guía básica (segunda edición) [En línea]. [Consulta: 21 de noviembre de 2024]. Disponible en: http://www.conafor.gob.mx:8080/documentos/docs/35/4034Gu%C3%ADa%20B%C3%A1sica%20de%20Bosques,%20Cambio%20Clim%C3%A1tico%20y%20REDD_%20.pdf

CORRAL-RIVAS, S., ÁLVAREZ-GONZÁLEZ, J.G., CORRAL-RIVAS, J.J., y LÓPEZ-SÁNCHEZ, C.A., 2015. Characterization of diameter structures of natural forests of northwest of Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente [En línea]. Vol. 21, n.° 2, pp. 221–236 [Consulta: 21 de noviembre de 2024]. ISSN 2007-4018. DOI: 10.5154/r.rchscfa.2014.10.046. Disponible en: https://revistas.chapingo.mx/forestale/last_issues/?section=articles&subsec=issues&numero=204&articulo=1993

DELIGNETTE M, M.L., y DUTANG, C., 2015. Fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software [En línea]. Vol. 64, n.° 4, pp. 1-34 [Consulta: 21 de noviembre de 2024]. ISSN 1548-7660. DOI: 10.18637/jss.v064.i04. Disponible en: https://www.jstatsoft.org/article/view/v064i04

GARCÍA, E., 2014. Modificaciones al sistema de clasificación climática Köppen. Ciudad de México: IG, UNAM.

GEORGE, F., y RAMACHANDRAN, K.M., 2011. Estimation of parameters of Johnson’s system of distributions. Journal of Modern Applied Statistical Methods [En línea]. Vol. 10, n.° 2, pp. 494-504 [Consulta: 21 de noviembre de 2024]. ISSN 1538-9472. DOI: 10.22237/jmasm/1320120480. Disponible en: https://jmasm.com/index.php/jmasm/article/view/559

GORGOSO-VARELA, J.J., ÁLVAREZ-GONZÁLEZ, J.G., ROJO-ALBORECA, A., y GRANDAS-ARIAS, J.A., 2007. Modelling diameter distributions of Betula alba L. stands in northwest Spain with the two-parameter Weibull function. ForestSystems[En línea]. Vol. 16, n.° 2, pp. 113-123. [Consulta: 02 de septiembre de 2024]. ISSN 2340-3578. DOI: 10.5424/srf/2007162-01002. Disponible en: https://fs.revistas.csic.es/index.php/fs/article/view/1002

GORGOSO-VARELA, J.J., OGANA, F.N., y IGE, P.O., 2020. A comparison between derivative and numerical optimization methods used for diameter distribution estimation. Scandinavian Journal of Forest Research [En línea]. Vol. 35, n.° 3-4, pp 156-164. [Consulta: 21 de julio de 2024]. ISSN 1651-1891. DOI: 10.1080/02827581.2020.1760343. Disponible: https://www.tandfonline.com/doi/abs/10.1080/02827581.2020.1760343

HYINK, D.M., y MOSER, J.W., 1983. A generalized framework for projecting forest yield and stand structure using diameter distributions. ForestScience [En línea]. Vol. 29, n.° 1, pp. 85-95. [Consulta: 25 de julio de 2024]. ISSN 1938-3738. DOI: 10.1093/forestscience/29.1.85 Disponible en: https://academic.oup.com/forestscience/article-abstract/29/1/85/4656683?login=false

INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA (INEGI), 2017. Guía para la interpretación de cartografía: Uso del Suelo y Vegetación. Escala 1:250,000. Serie VI. México [En línea]. [Consulta: 04 de septiembre de 2024]. Disponible en: http://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825092030.pdf

JIANG, L., y BROOKS, J. R., 2009. Predicting diameter distributions for young longleaf pine plantations in Southwest Georgia. Southern Journal of Applied Forestry [En línea]. Vol 33, n.° 1, pp. 25-28. [Consulta: 29 de agosto de 2024]. ISSN 1938-3754. DOI: 10.1093/sjaf/33.1.25. Disponible: https://colab.ws/articles/10.1093%2Fsjaf%2F33.1.25

LEDUC, D.J., MATNEY, T.G., BELLI, K.L., y BALDWIN, V.C., 2001. Predicting diameter distributions of longleaf pine plantations: A comparison between artificial neural networks and other accepted methodologies. Asheville, NC: U.S. Dept. of Agriculture, Forest Service, Southern Research Station. pp. 18.

MEHTÄTALO, L., 2017. Lmfor: functions for Forest Biometrics. R packageversion 1.2 [En línea]. [Consulta: 29 de julio de 2024]. Disponible en: https://cran.r-project.org/web/packages/lmfor/lmfor.pdf

MELÉNDEZ-SOTO, A., LÓPEZ-SÁNCHEZ, C. A., LÓPEZ-SERRANO, P. M., MONTIEL-ANTUNA, E., SOLÍS-MORENO, R., y CORRAL-RIVAS, J. J. 2017. Comparación de técnicas de rodalización en masas forestales de la Sierra Madre Occidental en el estado de Durango. Revista Mexicana de Ciencias Forestales 8 (41). México, ME. https://doi.org/10.29298/rmcf.v8i41.26

NANOS, N., y SJÖSTEDT DE LUNA, S.,2017. Fitting diameter distribution models to data from forest inventories with concentric plot design. ForestSystems[En línea]. Vol. 26, n.° 2, pp. e01S. [Consulta: 11 de septiembre de 2024]. ISSN 2171-9845. DOI: 10.5424/fs/2017262-10486. Disponible: https://fs.revistas.csic.es/index.php/fs/article/view/10486

OGANA, F. N., y DAU, J. H. 2019. Deriving Tree Crown Distributions from Diameter at Breast Height. Journal of Tropical Forestry and Environment [En línea]. Vol. 9, n.° 1, pp. 80-88. [Consulta: 03 de septiembre de 2024]. ISSN 2235-9362. DOI: 10.31357/jtfe.v9i1.3954. Disponible en: http://journals.sjp.ac.lk/index.php/JTFE/article/view/3954

OGANA, F.N., 2020. A percentile-based estimator for the Log-Logistic function: Application to forestry. ForestryStudies [En línea]. Vol. 72, n.° 1, pp. 107-120. [Consulta: 27 de agosto de 2024]. ISSN 1736-8723. DOI: 10.2478/fsmu-2020-0009. Disponible en: https://sciendo.com/article/10.2478/fsmu-2020-0009

POGODA, P., OCHAL, W., y ORZEL, S., 2019. Modeling diameter distribution of black alder (Alnusglutinosa (L.) Gaertn.) stands in Poland. Forests [En línea]. Vol. 10, n.° 5, pp. 412. [Consulta: 08 de agosto de 2024]. ISSN 1999-4907. DOI: 10.3390/f10050412. Disponible en: https://www.mdpi.com/1999-4907/10/5/412

POUDEL, K.P., y CAO, Q.V., 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. ForestScience[En línea]. Vol. 59, n.° 2, pp. 243-252. [Consulta: 17 de septiembre de 2024]. ISSN 1938-3738. DOI: 10.5849/forsci.12-001. Disponible en: https://academic.oup.com/forestscience/article/59/2/243/4583693

QUIÑONEZ-BARRAZA, G., DE LOS SANTOS-POSADAS, H.M., CRUZ-COBOS, F., VELÁZQUEZ-MARTÍNEZ, A., ÁNGELES-PÉREZ, G., y RAMÍREZ-VALVERDE, G., 2015. Modelación dinámica de distribuciones diamétricas en masas mezcladas de Pinus en Durango. México. Madera y Bosques [En línea]. Vol. 21, n.° 2, pp. 59-71. [Consulta: 22 de julio de 2024]. ISSN 1405-0471. DOI: 10.21829/myb.2015.212445. Disponible en: https://myb.ojs.inecol.mx/index.php/myb/article/view/445

R CORE TEAM. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: http://www.Rproject.org/

SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES (SEMARNAT), 2018. Anuario Estadístico de la Producción Forestal. Dirección General de Gestión Forestal y de Suelos. Estado de México [En línea]. [Consulta: 21 de agosto de 2024]. Disponible en: https://www.gob.mx/semarnat/documentos/anuarios-estadisticos-forestales

SUN, S., CAO, Q.V., y CAO, T., 2019. Characterizing diameter distributions for uneven-aged pine-Oak mixed forests in the Qinling Mountains of China. Forests [En línea]. Vol. 10, n.° 7, pp. 596. [Consulta: 17 de julio de 2024]. ISSN 1999-4907. DOI: 10.3390/f10070596. Disponible en: https://www.mdpi.com/1999-4907/10/7/596

TORRES-ROJO, J. M., MAGAÑA-TORRES, O. S., y ACOSTA-MIRELES, M. 2000. Metodología para mejorar la predicción de parámetros de distribuciones diamétricas. Agrociencia[En línea]. Vol. 34, n.° 5, pp. 627-637. [Consulta: 04 de septiembre de 2024]. ISSN: 1405-3195. Disponible en: http://www.redalyc.org/articulo.oa?id=30234512

WANG, M., & RENNOLLS K. 2005. Tree diameter distribution modelling: introducing the Logit-Logistic distribution. Canadian Journal of Forest Research [En línea]. Vol. 35, n.° 6, pp. 1305-1313. [Consulta: 15 de agosto de 2024]. ISSN 1208-6037. DOI: 10.1139/x05-057. Disponible en: https://cdnsciencepub.com/doi/10.1139/x05-057