Respuesta fotosintética de Guadua angustifolia Kunth y Bambusa vulgaris Schrad. ex J.C. Wendl. a diferentes intensidades de luz

Contenido principal del artículo

Diego Ureta-Leones
Yasiel Artega-Crespo
Yudel García-Quintana
Katheryn Arellano-Reinoso

Resumen

Los estudios de respuesta fotosintética a diversas intensidades lumínicas facilitan comprender la fisiología vegetal, optimizar el manejo y aprovechamiento sostenible de las especies. La investigación tuvo como fin evaluar la respuesta fotosintética de G. angustifolia y B. vulgaris a diferentes intensidades de luz. Las mediciones de asimilación fotosintética se realizaron utilizando un sistema portátil iFL - LCpro-SD. El punto compensación (% U ) se determinó mediante tres curvas A/Ci bajo tres niveles diferentes de intensidad lumínica. La evaluación de la respuesta fotosintética al incremento en la intensidad de luz fue de 25 a 1800 PPFD µmol m-2s-1. G. angustifolia presentó un % U de 73.9 µmol CO, m{ ²s{ ¹, indicando mayor eficiencia en la captura de carbono a concentraciones más bajas en comparación con B. vulgaris, que mostró un % U de 88.1 µmol CO, m{ ²s{ ¹. Además, G. angustifolia exhibió una menor tasa de respiración diurna (Rd) (0.33 µmol CO, m{ ²s{ ¹), lo que optimiza su eficiencia energética, mientras que B. vulgaris presentó una Rd más alta (1.08 µmol CO, m{ ²s{ ¹), lo que implica mayor consumo de energía en condiciones de baja intensidad lumínica. G. angustifolia no mostró fotoinhibición, ya que su tasa de asimilación fotosintética aumentó continuamente con la luz. En contraste, B. vulgaris experimentó fotoinhibición a partir de 700 µmol m{ ²s{ ¹ de PPFD. Estos hallazgos evidencian que G. angustifolia está mejor adaptada para capturar carbono en condiciones de baja concentraciones de CO, y altas intensidades de luz, mientras B. vulgaris parece adaptarse mejor a ambientes con mayor concentración CO.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Ureta-Leones, D., Artega-Crespo, Y., García-Quintana, Y., & Arellano-Reinoso, K. (2024). Respuesta fotosintética de Guadua angustifolia Kunth y Bambusa vulgaris Schrad. ex J.C. Wendl. a diferentes intensidades de luz. Revista Cubana De Ciencias Forestales, 12(3), e869. Recuperado a partir de https://cfores.upr.edu.cu/index.php/cfores/article/view/869
Sección
Artículos científicos

Citas

AGUIRRE-CADENA, J.F., RAMÍREZ-VALVERDE, B., CADENA-IÑIGUEZ, J., JUÁREZ-SÁNCHEZ, J.P., CASO-BARRERA, L., MARTÍNEZ-CARRERA, D., AGUIRRE-CADENA, J.F., RAMÍREZ-VALVERDE, B., CADENA-IÑIGUEZ, J., JUÁREZ-SÁNCHEZ, J.P., CASO-BARRERA, L. y MARTÍNEZ-CARRERA, D., 2018. Biomasa y carbono en Guadua angustifolia y Bambusa oldhamii en dos comunidades de la sierra Nororiental de Puebla, México. Revista de Biología Tropical [en línea], vol. 66, no. 4, [consulta: 31 agosto 2024]. ISSN 0034-7744. DOI 10.15517/RBT.V66I4.33364. Disponible en: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442018000401701&lng=en&nrm=iso&tlng=es.

ASANTE, K.O.H., AKOTO, D.S., DERKYI, N.S.A. y ABUGRE, S., 2024. Advancing circular economy for the growth, root development and elemental characteristics of bamboo (Bambusa vulgaris) on galamsey-degraded soil. Advances in Bamboo Science, vol. 6, ISSN 2773-1391. DOI 10.1016/J.BAMBOO.2023.100054.

ÁVILA-LOVERA, E. y TEZARA, W., 2018. Water-use efficiency is higher in green stems than in leaves of a tropical tree species. Trees - Structure and Function [en línea], vol. 32, no. 6, [consulta: 31 agosto 2024]. ISSN 09311890. DOI 10.1007/S00468-018-1732-X/TABLES/3. Disponible en: https://link.springer.com/article/10.1007/s00468-018-1732-x.

AZCÓN BIETO, J., FLECK BOU, I., ARANDA, X. y GÓMEZ CASANOVAS, N., 2008. Fotosíntesis, factores ambientales y cambio climático. Fundamentos de fisiología vegetal, 2008, ISBN 978-84-481-5168-3, págs. 247-263 [en línea], vol. Primera edición, [consulta: 22 septiembre 2024]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6380399.

BÖGELEIN, R., HASSDENTEUFEL, M., THOMAS, F.M. y WERNER, W., 2012. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech. Plant, Cell & Environment [en línea], vol. 35, no. 7, [consulta: 22 septiembre 2024]. ISSN 1365-3040. DOI 10.1111/J.1365-3040.2012.02486.X. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2012.02486.x.

CAO, Y., LI, J., LI, S. y ZHOU, B., 2024. The Effects of Long-Term Precipitation Exclusion on Leaf Photosynthetic Traits, Stomatal Conductance, and Water Use Efficiency in Phyllostachys edulis. Forests 2024, Vol. 15, Page 849 [en línea], vol. 15, no. 5, [consulta: 31 agosto 2024]. ISSN 1999-4907. DOI 10.3390/F15050849. Disponible en: https://www.mdpi.com/1999-4907/15/5/849/htm.

COCOZZA, C., DE MIGUEL, M., PŠIDOVÁ, E., DITMAROVÁ, L., MARINO, S., MAIURO, L., ALVINO, A., CZAJKOWSKI, T., BOLTE, A. y TOGNETTI, R., 2016. Variation in ecophysiological traits and drought tolerance of beech (Fagus sylvatica L.) seedlings from different populations. Frontiers in Plant Science, vol. 7, ISSN 1664462X. DOI 10.3389/FPLS.2016.00886/FULL.

DARYAEI, A., SOHRABI, H. y PUERTA-PIÑERO, C., 2019. How does light availability affect the aboveground biomass allocation and leaf morphology of saplings in temperate mixed deciduous forests? New Forests [en línea], vol. 50, no. 3, [consulta: 31 agosto 2024]. ISSN 15735095. DOI 10.1007/S11056-018-9666-0/TABLES/4. Disponible en: https://link.springer.com/article/10.1007/s11056-018-9666-0.

DEMMIG-ADAMS, B. y ADAMS, W.W., 1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, vol. 43, no. 1, ISSN 10402519. DOI 10.1146/ANNUREV.PP.43.060192.003123/CITE/REFWORKS.

DÍAZ, R.G., GONZÁLEZ-MARTÍNEZ, C. y PÉREZ, C., 2021. La guadua (Guadua angustifolia) Kunth: El oro verde por descubrir. [en línea], [consulta: 31 agosto 2024]. Disponible en: https://repository.uniminuto.edu/handle/10656/13238.

GENTY, B., BRIANTAIS, J.M. y BAKER, N.R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 990, no. 1, ISSN 0304-4165. DOI 10.1016/S0304-4165(89)80016-9.

GHASHGHAIE, J., BADECK, F.W., LANIGAN, G., NOGUÉS, S., TCHERKEZ, G., DELÉENS, E., CORNIC, G. y GRIFFITHS, H., 2003. Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews [en línea], vol. 2, no. 1-2, [consulta: 22 septiembre 2024]. ISSN 15687767. DOI 10.1023/B:PHYT.0000004326.00711.CA/METRICS. Disponible en: https://link.springer.com/article/10.1023/B:PHYT.0000004326.00711.ca.

KIEFFER, C., KAUR, N., LI, J., MATAMALA, R., FAY, P.A. y HUI, D., 2024. Photosynthetic responses of switchgrass to light and CO2 under different precipitation treatments. GCB Bioenergy [en línea], vol. 16, no. 8, [consulta: 14 septiembre 2024]. ISSN 1757-1707. DOI 10.1111/GCBB.13138. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.13138.

KULSIRILAK, N., AMPORNPITAK, R., KASIKAM, N. y TOR-NGERN, P., 2024. Investigating leaf gas exchanges of common trees in two urban parks with different periods of establishment in Bangkok, Thailand. Tropical Ecology [en línea], vol. 65, no. 2, [consulta: 31 agosto 2024]. ISSN 26618982. DOI 10.1007/S42965-024-00343-Y/METRICS. Disponible en: https://link.springer.com/article/10.1007/s42965-024 -00343-y.

LAISK, A.K., 1977. Kinetics of photosynthesis and photorespiration of C3 in plants. ,

LIU, J. y VAN IERSEL, M.W., 2021. Photosynthetic Physiology of Blue, Green, and Red Light: Light Intensity Effects and Underlying Mechanisms. Frontiers in Plant Science [en línea], vol. 12, [consulta: 31 agosto 2024]. ISSN 1664462X. DOI 10.3389/FPLS.2021.619987/BIBTEX. Disponible en: www.frontiersin.org.

OROZCO GUTIÉRREZ, G. y CESAR DE LIRA FUENTES, R., 2020. Elaboración de biocarbón para el aprovechamiento de residuos proveniente de las podas de bambú (Guadua angustifolia). revistaremaeitvo.mx [en línea], vol. 7, no. 1, [consulta: 31 agosto 2024]. Disponible en: https://revistaremaeitvo.mx/index.php/remae/article/download/41/34.

PIEDRAHÍTA, D., VÁSQUEZ, V., … L.T.-J. of S. y 2019, undefined, 2019. Evaluación y planificación de sistemas agroforestales sustentables de cacao (Theobroma cacao L.) y bambú (Guadua angustifolia K.), Montalvo, Ecuador. dialnet.unirioja.es [en línea], vol. 4, [consulta: 31 agosto 2024]. DOI 10.5281/zenodo.3473533. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7368042.

RALPH, P.J. y GADEMANN, R., 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany, vol. 82, no. 3, ISSN 0304-3770. DOI 10.1016/J.AQUABOT.2005.02.006.

SAPUYES, E., OSORIO, J., TAKEUCHI, C., DUARTE, M. y ERAZO, W., 2018. Resistencia y elasticidad a la flexión de la guadua angustifolia Kunth de Pitalito, Huila. Revista de Investigación [en línea], vol. 11, no. 1, [consulta: 31 agosto 2024]. ISSN 2590-6062. DOI 10.29097/2011-639X.182. Disponible en: https://revistas.uamerica.edu.co/index.php/rinv/article/view/182.

SCHMIEGE, S.C., SHARKEY, T.D., WALKER, B., HAMMER, J. y WAY, D.A., 2023. Laisk measurements in the nonsteady state: Tests in plants exposed to warming and variable CO2 concentrations. Plant Physiology [en línea], vol. 193, no. 2, [consulta: 3 septiembre 2024]. ISSN 0032-0889. DOI 10.1093/PLPHYS/KIAD305. Disponible en: https://dx.doi.org/10.1093/plphys/kiad305.

SHAO, H.B., CHU, L.Y., JALEEL, C.A., MANIVANNAN, P., PANNEERSELVAM, R. y SHAO, M.A., 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical Reviews in Biotechnology, vol. 29, no. 2, ISSN 07388551. DOI 10.1080/07388550902869792.

STOJANOVIÆ, M., JOCHER, G., KOWALSKA, N., SZATNIEWSKA, J., ZAVADILOVÁ, I., URBAN, O., ÈÁSLAVSKÝ, J., HORÁÈEK, P., ACOSTA, M., PAVELKA, M. y MARSHALL, J.D., 2024. Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest. Tree Physiology [en línea], vol. 44, no. 7, [consulta: 31 agosto 2024]. ISSN 17584469. DOI 10.1093/TREEPHYS/TPAE064. Disponible en: https://dx.doi.org/10.1093/treephys/tpae064.

SU, S., JIN, N. y WEI, X., 2024. Effects of thinning on the understory light environment of different stands and the photosynthetic performance and growth of the reforestation species Phoebe bournei. Journal of Forestry Research [en línea], vol. 35, no. 1, [consulta: 31 agosto 2024]. ISSN 19930607. DOI 10.1007/S11676-023-01651-0/FIGURES/7. Disponible en: https://link.springer.com/article/10.1007/s11676-023-01651-0.

XU, Y., DU, H., MAO, F., LI, X., ZHOU, G., HUANG, Z., GUO, K., ZHANG, M., LUO, X., CHEN, C. y ZHAO, Y., 2024. Effects of chlorophyll fluorescence on environment and gross primary productivity of moso bamboo during the leaf-expansion stage. Journal of Environmental Management, vol. 360, ISSN 0301-4797. DOI 10.1016/J.JENVMAN.2024.121185.

YANG, X., XU, H., SHAO, L., LI, T., WANG, Y. y WANG, R., 2018. Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environmental and Experimental Botany, vol. 150, ISSN 0098-8472. DOI 10.1016/J.ENVEXPBOT.2018.03.013.

YE, Z., SUGGETT, D., ROBAKOWSKI, P., PHYTOLOGIST, H.K.-N. y 2013, undefined, 2013. A mechanistic model for the photosynthesislight response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. Wiley Online LibraryZP Ye, DJ Suggett, P Robakowski, HJ KangNew Phytologist, 2013•Wiley Online Library [en línea], vol. 199, no. 1, [consulta: 22 septiembre 2024]. DOI 10.1111/nph.12242. Disponible en: https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.12242.

ZHANG, X., TONG, C., FANG, D., MEI, T. y LI, Y., 2023. Different hydraulic and photosynthetic responses to summer drought between newly sprouted and established Moso bamboo culms. Frontiers in Plant Science, vol. 14, ISSN 1664462X. DOI 10.3389/FPLS.2023.1252862/BIBTEX.

ZHANG, Y. y YE, A., 2021. Would the obtainable gross primary productivity (GPP) products stand up? A critical assessment of 45 global GPP products. Science of The Total Environment, vol. 783, ISSN 0048-9697. DOI 10.1016/J.SCITOTENV.2021.146965.