Comparación de métodos no destructivos para estimar el área foliar de Cinchona officinalis L. mediante procesamiento digital de imágenes Comparison of non-destructive methods for estimating the leaf area of Cinchona officinalis L. using digital image processing
Contenido principal del artículo
Resumen
Cinchona officinalis es una importante especie vegetal, fue el único tratamiento para la malaria durante más de tres siglos. El objetivo de este estudio fue comparar la precisión de cuatro métodos no destructivos de procesamiento digital de imágenes (LeafArea y tres algoritmos de ImageJ) para estimar el área foliar de plantaciones jóvenes de C. officinalis en dos condiciones de establecimiento: macizo forestal y franjas de enriquecimiento. Se fotografiaron hojas a 8 cm de distancia utilizando un smartphone de 24 MP y se procesaron con los métodos evaluados. El análisis estadístico incluyó diagramas de caja y bigotes, correlación de Pearson y prueba de Friedman. Los resultados mostraron que los métodos M3 y M4 de ImageJ presentaron la mayor precisión (r = 0,99), sin diferencias significativas entre ellos, y con sobreestimaciones detectadas en M1 y M2. Se concluye que M3 y M4 son opciones rápidas, de bajo costo y alta precisión para el monitoreo foliar de C. officinalis en campo.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Citas
AHMAD, S., ALI, HAKOOMAT, ATIQUE-UR-REHMAN, KHAN, R.J.Z., AHMAD, W., FATIMA, Z., ABBAS, G., IRFAN, M., ALI, HINA, KHAN, M.A. Y HASANUZZAMAN, M. 2015. Measuring leaf area of winter cereals by different techniques: a comparison. Pakistan Journal of Life and Social Sciences, vol. 13, no. 2, ISSN 1727-4915. Disponible en: https://pjlss.edu.pk/pdf_files/2015_2/117-125.pdf
ARSLAN, A.E., ERTEN, E. Y INAN, M. 2021. A comparative study for obtaining effective Leaf Area Index from single Terrestrial Laser Scans by removal of wood material. Measurement, vol. 178, ISSN 0263-2241. DOI 10.1016/j.measurement.2021.109262.
AYMARD, G.A. 2019. Breve reseña de los aspectos taxonómicos y nomenclaturales actuales del género Cinchona (Rubiaceae-Cinchoneae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 43, ISSN 2382-4980. DOI 10.18257/raccefyn.1079. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7433220
BAKER, B., OLSZYK, D.M. Y TINGEY, D. 1996. Digital Image Analysis to Estimate Leaf Area. Journal of Plant Physiology, vol. 148, no. 5, ISSN 0176-1617. DOI 10.1016/S0176-1617(96)80072-1. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0176161796800721
BLANCO, F.F. Y FOLEGATTI, M.V. 2005. Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, vol. 62, ISSN 1678-992X. DOI 10.1590/S0103-90162005000400001. Disponible en:. https://www.scielo.br/j/sa/a/Fz6Ln7zsJFmN56Nn5qhgMNt/
BRÉDA, N.J.J. 2003. Ground‐based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, vol. 54, no. 392, ISSN 0022-0957. DOI 10.1093/jxb/erg263. Disponible en:. https://academic.oup.com/jxb/article/54/392/2403/621920
CAMPOS-TABERNER, M., GARCÍA-HARO, F.J., CONFALONIERI, R., MARTÍNEZ, B., MORENO, Á., SÁNCHEZ-RUIZ, S., GILABERT, M.A., CAMACHO, F., BOSCHETTI, M. Y BUSETTO, L. 2016. Multitemporal Monitoring of Plant Area Index in the Valencia Rice District with PocketLAI. Remote Sensing, vol. 8, no. 3, DOI 10.3390/rs8030202. Disponible en: https://www.mdpi.com/2072-4292/8/3/202
CASA, R., UPRETI, D. Y PELOSI, F. 2019. Measurement and estimation of leaf area index (LAI) using commercial instruments and smartphone-based systems. IOP Conference Series: Earth and Environmental Science, vol. 275, no. 1, ISSN 1755-1315. DOI 10.1088/1755-1315/275/1/012006. Disponible en: https://www.researchgate.net/publication/333257054_Measurement_and_estimation_of_leaf_area_index_LAI_using_commercial_instruments_and_smartphone-based_systems
CASTILLO, O.S., ZARAGOZA, E.M., ALVARADO, C.J., BARRERA, M.G. Y DASGUPTA-SCHUBERT, N. 2014. Foliar area measurement by a new technique that utilizes the conservative nature of fresh leaf surface density. En: arXiv: 1212.5761, International Agrophysics, vol. 28, no. 4, ISSN 2300-8725. DOI 10.2478/intag-2014-0032. Disponible en: https://arxiv.org/abs/1212.5761
CHIANUCCI, F., PULETTI, N., GIACOMELLO, E., CUTINI, A. Y CORONA, P. 2015. Estimation of leaf area index in isolated trees with digital photography and its application to urban forestry. Urban Forestry & Urban Greening, vol. 14, no. 2, ISSN 1618-8667. DOI 10.1016/j.ufug.2015.04.001. en: https://www.sciencedirect.com/science/article/abs/pii/S1618866715000412
CONFALONIERI, R., FOI, M., CASA, R., AQUARO, S., TONA, E., PETERLE, M., BOLDINI, A., DE CARLI, G., FERRARI, A., FINOTTO, G., GUARNERI, T., MANZONI, V., MOVEDI, E., NISOLI, A., PALEARI, L., RADICI, I., SUARDI, M., VERONESI, D., BREGAGLIO, S., CAPPELLI, G., CHIODINI, M.E., DOMINONI, P., FRANCONE, C., FRASSO, N., STELLA, T. Y ACUTIS, M. 2013. Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and Electronics in Agriculture, vol. 96, ISSN 0168-1699. DOI 10.1016/j.compag.2013.04.019.
EASLON, H.M. Y BLOOM, A.J. 2014. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, vol. 2, no. 7, ISSN 2168-0450. DOI 10.3732/apps.1400033. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC4103476/
FERREIRA, O.G.L., ROSSI, F.D., VAZ, R.Z., FLUCK, A.C., COSTA, O. A. D. Y FARIAS, P.P. 2017. Determinação de área foliar por análise de imagens digitais. Archivos de Zootecnia, vol. 66, no. 256, ISSN 1885-4494. DOI 10.21071/az.v66i256.2777. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC4103476/
GARRIGUES, S., SHABANOV, N.V., SWANSON, K., MORISETTE, J.T., BARET, F. Y MYNENI, R.B. 2008. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology, vol. 148, no. 8, ISSN 0168-1923. DOI 10.1016/j.agrformet.2008.02.014. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0168192308000683
JONCKHEERE, I., FLECK, S., NACKAERTS, K., MUYS, B., COPPIN, P., WEISS, M. Y BARET, F. 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, vol. 121, no. 1, ISSN 0168-1923. DOI 10.1016/j.agrformet.2003.08.027. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0168192303001643
KAUFMAN, T.S. Y RÚVEDA, E.A. 2005. The Quest for Quinine: Those Who Won the Battles and Those Who Won the War. Angewandte Chemie International Edition, vol. 44, no. 6, ISSN 1521-3773. DOI 10.1002/anie.200400663. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15669029/
KIRK, K., ANDERSEN, H.J., THOMSEN, A.G., JØRGENSEN, J.R. Y JØRGENSEN, R.N. 2009. Estimation of leaf area index in cereal crops using red–green images. Biosystems Engineering, vol. 104, no. 3, ISSN 1537-5110. DOI 10.1016/j.biosystemseng.2009.07.001. en: https://www.sciencedirect.com/science/article/abs/pii/S1537511009002219
LEE, K.-J. Y LEE, B.-W. 2011. Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology, vol. 14, no. 2, ISSN 2005-8276. DOI 10.1007/s12892-011-0029-z. Disponible en: https://www.researchgate.net/publication/226177969_Estimating_canopy_cover_from_color_digital_camera_image_of_rice_field
LIU, J. Y PATTEY, E. 2010. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agricultural and Forest Meteorology, vol. 150, no. 11, ISSN 0168-1923. DOI 10.1016/j.agrformet.2010.08.002. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0168192310002029
QU, Y., WANG, Z., SHANG, J., LIU, J. Y ZOU, J., 2021. Estimation of leaf area index using inclined smartphone camera. Computers and Electronics in Agriculture, vol. 191, ISSN 0168-1699. DOI 10.1016/j.compag.2021.106514. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0168169921005317
RAHEEM, I.T., GOODMAN, S.N. Y JACOBSEN, E.N. 2004. Catalytic Asymmetric Total Syntheses of Quinine and Quinidine. Journal of the American Chemical Society, vol. 126, no. 3, ISSN 0002-7863. DOI 10.1021/ja039550y. Disponible en: https://pubs.acs.org/doi/10.1021/ja039550y
RINCÓN, N., OLARTE, M.A. Y PÉREZ, J.C. 2012. Determinación del Área Foliar en Fotografías Tomadas con una Cámara Web, un Teléfono Celular o una Cámara Semiprofesional. Revista Facultad Nacional de Agronomía Medellín, vol. 65, no. 1, ISSN 0304-2847. Disponible en: https://www.redalyc.org/pdf/1799/179924340010.pdf
STRACHAN, I. b., STEWART, D. W. Y PATTEY, E. 2005. Determination of Leaf Area Index in Agricultural Systems. Micrometeorology in Agricultural Systems [en línea]. S.l.: John Wiley & Sons, Ltd, pp. 179-198. [consulta: 13 febrero 2022]. ISBN 978-0-89118-268-9. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.2134/agronmonogr47.c9.
SUÁREZ, J.C., MELGAREJO, L.M., DURÁN, E.H., DI RIENZO, J.A. Y CASANOVES, F. 2018. Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae, vol. 229, ISSN 0304-4238. DOI 10.1016/j.scienta.2017.10.034. Disponible en:. https://www.sciencedirect.com/science/article/abs/pii/S0304423817306490
SWART, E.A.M.D., GROENWOLD, R., KANNE, H.J., STAM, P., MARCELIS, L.F.M. Y VOORRIPS, R.E. 2004. Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L. The Journal of Horticultural Science and Biotechnology, vol. 79, no. 5, ISSN 1462-0316. DOI 10.1080/14620316.2004.11511840. Disponible en: https://www.researchgate.net/publication/40103791_Non-
SYVERTSEN, J.P., GOÑI, C. Y OTERO, A. 2003. Fruit load and canopy shading affect leaf characteristics and net gas exchange of ‘Spring’ navel orange trees. Tree Physiology, vol. 23, no. 13, ISSN 0829-318X. DOI 10.1093/treephys/23.13.899. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14532013/
TEACHER, A.G.F., GRIFFITHS, D.J., HODGSON, D.J. Y INGER, R. 2013. Smartphones in ecology and evolution: a guide for the app-rehensive. Ecology and Evolution, vol. 3, no. 16, ISSN 2045-7758. DOI 10.1002/ece3.888. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.888
THIMONIER, A., SEDIVY, I. Y SCHLEPPI, P. 2010. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research, vol. 129, no. 4, ISSN 1612-4677. DOI 10.1007/s10342-009-0353-8. Disponible en: https://www.schleppi.ch/patrick/publi/pdf/atal10b.pdf
WEISS, M., BARET, F., SMITH, G.J., JONCKHEERE, I. Y COPPIN, P. 2004. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, vol. 121, no. 1, ISSN 0168-1923. DOI 10.1016/j.agrformet.2003.08.001. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0168192303001631
YILMAZ, M.T., HUNT, E.R., GOINS, L.D., USTIN, S.L., VANDERBILT, V.C. Y JACKSON, T.J. 2008. Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery. Remote Sensing of Environment, vol. 112, no. 2, ISSN 0034-4257. DOI 10.1016/j.rse.2007.03.029. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0034425707003021