Evaluación de la deforestación en bosques subtropicales utilizando datos de terrenos espacio-temporales

Contenido principal del artículo

Syed Hassan Raza
Muhammad Irfan Ashraf
Areeba Binte Imran
Ishfaq Ahmad Khan
Syed Ghayoor Ali Shah

Resumen

La presente investigación evaluó el cambio espacio-temporal en el bosque subtropical del distrito de Malakand mediante técnicas de teledetección y SIG. El objetivo principal era identificar las diferentes clases de cobertura del suelo y determinar los cambios temporales de la cobertura forestal en el área de estudio. Este estudio se basó en dos técnicas de clasificación diferentes para la clasificación de la cubierta del suelo. En este estudio, se adquirieron cuatro imágenes Landsat con un intervalo de 10 años desde 1988 hasta 2018. La clasificación de máxima verosimilitud y la clasificación de mínima distancia se aplicaron a las cuatro imágenes paso a paso. La superficie total del distrito de Malakand se registró como 975,32 km2. En lo que respecta a la cobertura porcentual de la superficie, el bosque cubrió el 22,1 % de la superficie total, mientras que los asentamientos, la agricultura, las tierras baldías y el agua cubrieron el 17,7, el 23,3, el 33 y el 3,9 % respectivamente en 1988. Durante el año 2018, el bosque cubrió el 9,3 % de la superficie total, así también los asentamientos de otras clases, la agricultura, la tierra estéril y el agua han cubierto el 33,8, 22,3, 31,8 y 3,7 respectivamente. El cambio en la superficie forestal a lo largo del tiempo fue de 60,4 km2, lo que equivale a un 6,2 % durante el período 1998-2008 y, en última instancia, la deforestación global fue de 124,4 km2, lo que equivale a una pérdida del 12,7 % de la superficie forestal perdida entre 1998 y 2018. Por lo tanto, la superficie forestal se transformó en asentamientos y tierras baldías de 1988 a 2018. Se calculó el índice de vegetación de diferencia normalizada (NDVI) para 1988, 1998, 2008 y 2018. Según el análisis del NDVI, la deforestación total a lo largo del tiempo fue de 166,29 km2 en los últimos 30 años (1988-2018), con un porcentaje de deforestación del 43,66 % de superficie perdida. Las imágenes Landsat tienen una resolución de 30 metros y los cambios en las áreas forestales pequeñas no pueden ser detectados por las imágenes Landsat, a diferencia de los productos de alta resolución que pueden detectar más deforestación en comparación.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Raza, S. H., Ashraf, M. I., Imran, A. B., Khan, I. A., & Shah, S. G. A. (2021). Evaluación de la deforestación en bosques subtropicales utilizando datos de terrenos espacio-temporales. Revista Cubana De Ciencias Forestales, 9(2), 205–225. Recuperado a partir de https://cfores.upr.edu.cu/index.php/cfores/article/view/688
Sección
Artículos científicos

Citas

ALI, A., ASHRAF, Dr.I., GULZAR, S. y AKMAL, M., 2020. Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: implications for REDD+ and climate change mitigation. Environmental Monitoring and Assessment [en línea], vol. 192, no. 3, pp. 1-13. DOI 10.1007/s10661-020-8157-x. Disponible en: https://www.researchgate.net/publication/339541526_Estimation_of_forest_carbon_stocks_in_temperate_and_subtropical_mountain_systems_of_Pakistan_implications_for_REDD_and_climate_change_mitigation

ALI, A., ASHRAF, Dr.I., GULZAR, S., AKMAL, M. y AHMAD, B., 2019. Estimation of soil carbon pools in the forests of Khyber Pakhtunkhwa Province, Pakistan. Journal of Forestry Research [en línea], vol. 31, no. 1, pp. 1-9. DOI 10.1007/s11676-019-01059-9. Disponible en: https://www.researchgate.net/publication/336673520_Estimation_of_soil_carbon_pools_in_the_forests_of_Khyber_Pakhtunkhwa_Province_Pakistan.

ALI, A., ULLAH, S., BUSHRA, S., AHMAD, N. y KHAN, M.A., 2018. Quantifying forest carbon stocks by integrating satellite images and forest inventory data. Austrian Journal of Forest Science [en línea], vol. 135, no. 2, pp. 93-118. Disponible en: https://www.researchgate.net/publication/327174541_Quantifying_forest_carbon_stocks_by_integrating_satellite_images_and_forest_inventory_data.

ALI, S., ALI, W., NADEEM, M., KHAN, A., RAHMAN, Z. y IQBAL, A., 2017. Forest cover change and carbon stock assessment in Swat valley using remote sensing and geographical information systems. Pure and Aplied Biology [en línea], vol. 6, no. 3, pp. 850-856. DOI 10.19045/bspab.2017.60089. Disponible en: https://www.researchgate.net/publication/318502849_Forest_cover_change_and_carbon_stock_assessment_in_Swat_valley_using_remote_sensing_and_geographical_information_systems.

AWASTHI, K.D., SITAULA, B.K., SINGH, B.R. y BAJACHARAYA, R.M., 2002. Land-use change in two Nepalese watersheds: GIS and geomorphometric analysis. Land Degradation & Development [en línea], vol. 13, no. 6, pp. 495-513. [Consulta: 4 mayo 2021]. ISSN 1099-145X. DOI https://doi.org/10.1002/ldr.538. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/ldr.538.

BADSHAH BUKHARI, S.S., BAJWA, G.A. y REHMAN, S.S., 2019. Climate-Growth Response Function of the Blue Pine (Pinus Wallichiana) in Galies Forest Division-Abbottabad, KP, Pakistan. Sarhad Journal of Agriculture [en línea], vol. 35, no. 1, pp. 116-125. [Consulta: 4 mayo 2021]. Disponible en: https://researcherslinks.com/current-issues/Climate-Growth-Response-Function-of-the-Blue-Pine-Pinus-Wallichiana-in-Galies-Forest-Division-Abbottabad-KP-Pakistan/14/1/2004/figures

BATAR, A., WATANABE, T. y KUMAR, A., 2017. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India. Environments [en línea], vol. 4, no. 2, pp. 34. DOI 10.3390/environments4020034. Disponible en: https://www.researchgate.net/publication/316273164_Assessment_of_Land-UseLand-Cover_Change_and_Forest_Fragmentation_in_the_Garhwal_Himalayan_Region_of_India.

BEHERA, M.D., TRIPATHI, P., DAS, P. y SRIVASTAV, S.K., 2018. Remote sensing based deforestation analysis in Mahanadi and Brahmaputra river basin in India since 1985. Journal of Environmental Management [en línea], vol. 206, pp. 1192-1203. [Consulta: 4 mayo 2021]. DOI 10.1016/j.jenvman.2017.10.015. Disponible en: https://www.researchgate.net/publication/321123158_Remote_sensing_based_deforestation_analysis_in_Mahanadi_and_Brahmaputra_river_basin_in_India_since_1985.

CARR, F., 2007. Government decision-making and environmental degradation: a study relating to mining activities in Papua New Guinea [en línea]. Doctoral dissertation. S.l.: Murdoch University. Disponible en: https://researchrepository.murdoch.edu.au/id/eprint/502/1/01Front.pdf.

CHAKRAVARTY, S., GHOSH, S., SURESH, C., DEY, A. y SHUKLA, G., 2012. Deforestation: Causes, Effects and Control Strategies [en línea]. S.l.: s.n. ISBN 978-953-51-0569-5. Disponible en: https://www.intechopen.com/books/global-perspectives-on-sustainable-forest-management/deforestation-causes-effects-and-control-strategies.

DAVIES, H.J., DOICK, K.J., HUDSON, M.D. y SCHRECKENBERG, K., 2017. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests. Environmental Research [en línea], vol. 156, pp. 97-107. [Consulta: 4 mayo 2021]. ISSN 0013-9351. DOI 10.1016/j.envres.2017.03.020. Disponible en: https://www.sciencedirect.com/science/article/pii/S0013935117304942.

ISLAM, K., JASHIMUDDIN, M., NATH, B. y NATH, T.K., 2018. Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science [en línea], vol. 21, no. 1, pp. 37-47. [Consulta: 4 mayo 2021]. ISSN 1110-9823. DOI 10.1016/j.ejrs.2016.12.005. Disponible en: https://www.sciencedirect.com/science/article/pii/S1110982316301594.

KAUSAR, R., BAIG, S. y RIAZ, I., 2016. Spatio-temporal land use/land cover analysis of Murree using remote sensing and GIS. Asian Journal of Agriculture and rural Development [en línea], vol. 6, no. 3, pp. 50-58. [Consulta: 4 mayo 2021]. Disponible en: https://ideas.repec.org/a/asi/ajosrd/2016p50-58.html.

KEMPPINEN, K.M.S., COLLINS, P.M., HOLE, D.G., WOLF, C., RIPPLE, W.J. y GERBER, L.R., 2020. Global reforestation and biodiversity conservation. Conservation Biology [en línea], vol. 34, no. 5, pp. 1221-1228. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32017194/

KESSY, J.F., NSOKKO, E., KASWAMILA, A. y KIMARO, F., 2016. Analysis of Drivers and Agents of Deforestation and Forest Degradation in Masito Forests, Kigoma, Tanzania. International Journal of Asian Social Science [en línea], vol. 6, no. 2, pp. 93-107. [Consulta: 4 mayo 2021]. Disponible en: https://ideas.repec.org/a/asi/ijoass/2016p93-107.html.

KHALID, S. ur R., KHAN, M.R., USMAN, M., YASIN, M.W. y IQBAL, M.S., 2016. Spatiotemporal Monitoring for Deforestation and Forest Degradation Activities in Selected Areas of Khyber Pakhtunkhwa (KPK). International Journal of Geosciences [en línea], vol. 7, no. 10, pp. 1191-1207. [Consulta: 4 mayo 2021]. DOI 10.4236/ijg.2016.710089. Disponible en: http://www.scirp.org/Journal/Paperabs.aspx?paperid=71536.

KHAN, A., KHAN, N., ALI, K. y RAHMAN, I., 2019. An Assessment of the Floristic Diversity, Life-Forms and Biological Spectrum of Vegetation in Swat Ranizai, District Malakand, Khyber Pakhtunkhwa, Pakistan. Science, Technology and Development [en línea], vol. 36, no. 2, pp. 61-78. Disponible en: https://www.researchgate.net/publication/335608705_An_Assessment_of_the_Floristic_Diversity_Life-Forms_and_Biological_Spectrum_of_Vegetation_in_Swat_Ranizai_District_Malakand_Khyber_Pakhtunkhwa_Pakistan.

KHAN, W., KHAN, S.M., AHMAD, H., ALQARAWI, A.A., SHAH, G.M., HUSSAIN, M. y ABD_ALLAH, E.F., 2018. Life forms, leaf size spectra, regeneration capacity and diversity of plant species grown in the Thandiani forests, district Abbottabad, Khyber Pakhtunkhwa, Pakistan. Saudi Journal of Biological Sciences [en línea], vol. 25, no. 1, pp. 94-100. [Consulta: 4 mayo 2021]. ISSN 1319-562X. DOI 10.1016/j.sjbs.2016.11.009. Disponible en: https://www.sciencedirect.com/science/article/pii/S1319562X16301668.

KOUBA, Y., GARTZIA, M., EL AICH, A. y ALADOS, C.L., 2018. Deserts do not advance, they are created: Land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. Journal of Arid Environments [en línea], vol. 158, pp. 1-8. [Consulta: 4 mayo 2021]. ISSN 0140-1963. DOI 10.1016/j.jaridenv.2018.07.002. Disponible en: https://www.sciencedirect.com/science/article/pii/S0140196318304257.

MESHESHA, T.W., TRIPATHI, S.K. y KHARE, D., 2016. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Modeling Earth Systems and Environment [en línea], vol. 2, no. 4, pp. 1-12. [Consulta: 4 mayo 2021]. ISSN 2363-6211. DOI 10.1007/s40808-016-0233-4. Disponible en: https://doi.org/10.1007/s40808-016-0233-4.

MUHAMMAD, Z., KHAN, N. y ULLAH, A., 2016. Quantitative Ethnobotanical Profile of Understory Vegetation in Acacia Modesta (Wall) Forests of Malakand Division, Pakistan. Science, Technology and Development [en línea], vol. 35, no. 2, pp. 88-93. DOI 10.3923/STD.2016.88.93. Disponible en: https://www.semanticscholar.org/paper/Quantitative-Ethnobotanical-Profile-of-Understory-Muhammad-Khan/06c36545fd271a2df5aa7d9fc9d4a6a26ac9f9ed.

NDA, M., ADNAN, M.S., AHMAD, K.A., USMAN, N., RAZI, M.A.M. y DAUD, Z., 2018. A Review on the Causes, Effects and Mitigation of Climate Changes on the Environmental Aspects. International Journal of Integrated Engineering [en línea], vol. 10, no. 4. [Consulta: 4 mayo 2021]. ISSN 2600-7916. Disponible en: https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/2269.

ITSCHKE, C.R., WAEBER, P.O., KLAASSEN, J.W., DORDEL, J., INNES, J.L. y APONTE, C., 2017. Nutrient uptake and use efficiency in co-occurring plants along a disturbance and nutrient availability gradient in the boreal forests of the southwest Yukon, Canada. Journal of Vegetation Science [en línea], vol. 28, no. 1, pp. 69-81. [Consulta: 4 mayo 2021]. ISSN 1654-1103. DOI https://doi.org/10.1111/jvs.12468. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jvs.12468.

PHILIPPE, M.T. y KARUME, K., 2019. Assessing Forest Cover Change and Deforestation Hot-Spots in the North Kivu Province, DR-Congo Using Remote Sensing and GIS. American Journal of Geographic Information System [en línea], vol. 8, no. 2, pp. 39-54. [Consulta: 4 mayo 2021]. ISSN 2163-114X. Disponible en: http://article.sapub.org/10.5923.j.ajgis.20190802.01.html.

PHIRI, D. y MORGENROTH, J., 2017. Developments in landsat land cover classification methods: A review. Remote Sensing [en línea], vol. 9, no. 9, pp. 967. [Consulta: 4 mayo 2021]. ISSN 2072-4292. Disponible en: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201802220882090078.

QAMER, F.M., SHEHZAD, K., ABBAS, S., MURTHY, M.S.R., XI, C., GILANI, H. y BAJRACHARYA, B., 2016. Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan. Remote Sensing [en línea], vol. 8, no. 5, pp. 385. [Consulta: 4 mayo 2021]. DOI 10.3390/rs8050385. Disponible en: https://www.mdpi.com/2072-4292/8/5/385.

QASIM, M., HUBACEK, K., TERMANSEN, M. y KHAN, A., 2011. Spatial and temporal dynamics of land use pattern in District Swat, Hindu Kush Himalayan region of Pakistan. Applied Geography [en línea], vol. 31, no. 2, pp. 820-828. [Consulta: 4 mayo 2021]. ISSN 0143-6228. DOI 10.1016/j.apgeog.2010.08.008. Disponible en: https://www.sciencedirect.com/science/article/pii/S0143622810001098.

SHAWUL, A.A. y CHAKMA, S., 2019. Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environmental Earth Sciences [en línea], vol. 78, no. 5, pp. 141. [Consulta: 4 mayo 2021]. ISSN 1866-6299. DOI 10.1007/s12665-019-8154-y. Disponible en: https://doi.org/10.1007/s12665-019-8154-y.

SONTER, L., HERRERA, D., BARRETT, D., GALFORD, G., MORAN, C. y FILHO, B., 2017. Mining drives extensive deforestation in the Brazilian Amazon. Nature Communications [en línea], vol. 8. DOI 10.1038/s41467-017-00557-w. Disponible en: https://www.researchgate.net/publication/320472961_Mining_drives_extensive_deforestation_in_the_Brazilian_Amazon.

TANG, Z., ENGEL, B.A., PIJANOWSKI, B.C. y LIM, K.J., 2005. Forecasting land use change and its environmental impact at a watershed scale. Journal of Environmental Management [en línea], vol. 76, no. 1, pp. 35-45. [Consulta: 4 mayo 2021]. ISSN 0301-4797. DOI 10.1016/j.jenvman.2005.01.006. Disponible en: https://www.sciencedirect.com/science/article/pii/S0301479705000514.

TEGEGNE, Y.T., LINDNER, M., FOBISSIE, K. y KANNINEN, M., 2016. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy [en línea], vol. 51, pp. 312-324. [Consulta: 4 mayo 2021]. ISSN 0264-8377. DOI 10.1016/j.landusepol.2015.11.024. Disponible en: https://www.sciencedirect.com/science/article/pii/S0264837715003877.

TWUMASI, Y.A. y MEREM, E.C., 2006. Management of watersheds with remote sensing and GIS: a case study of River Niger Delta Region in Nigeria. ASPRS 2006 Annual Conference [en línea]. Reno, Nevada: ASPRS, Disponible en: http://www.asprs.org/a/publications/proceedings/reno2006/0158.pdf

UROOJ, R. y AHMAD, S.S., 2019. Spatio-temporal ecological changes around wetland using multispectral satellite imagery in AJK, Pakistan. SN Applied Sciences [en línea], vol. 1, no. 7, pp. 714. [Consulta: 4 mayo 2021]. ISSN 2523-3971. DOI 10.1007/s42452-019-0748-1. Disponible en: https://doi.org/10.1007/s42452-019-0748-1.

USSIRI, D.A.N. y LAL, R., 2017. Introduction to Global Carbon Cycling: An Overview of the Global Carbon Cycle. En: D.A.N. USSIRI y R. LAL (eds.), Carbon Sequestration for Climate Change Mitigation and Adaptation [en línea]. Estados Unidos: Springer International Publishing, pp. 61-76. [Consulta: 4 mayo 2021]. ISBN 978-3-319-53845-7. Disponible en: https://doi.org/10.1007/978-3-319-53845-7_3.

VAN DER SANDE, M.T., POORTER, L., BALVANERA, P., KOOISTRA, L., THONICKE, K., BOIT, A., DUTRIEUX, L.P., EQUIHUA, J., GERARD, F., HEROLD, M., KOLB, M., SIMÕES, M. y PEÑA-CLAROS, M., 2017. The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests. Current Opinion in Environmental Sustainability [en línea], vol. 26-27, pp. 69-76. [Consulta: 4 mayo 2021]. ISSN 1877-3435. DOI 10.1016/j.cosust.2017.01.016. Disponible en: https://www.sciencedirect.com/science/article/pii/S187734351730026X.

WESTLING, N., STROMBERG, P.M. y SWAIN, R.B., 2020. Can upstream ecosystems ensure safe drinking water—Insights from Sweden. Ecological Economics [en línea], vol. 169. [Consulta: 4 mayo 2021]. ISSN 0921-8009. DOI 10.1016/j.ecolecon.2019.106552. Disponible en: https://www.sciencedirect.com/science/article/pii/S0921800919306019.

WULDER, M.A., WHITE, J.C., LOVELAND, T.R., WOODCOCK, C.E., BELWARD, A.S., COHEN, W.B., FOSNIGHT, E.A., SHAW, J., MASEK, J.G. y ROY, D.P., 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment [en línea], vol. 185, pp. 271-283. [Consulta: 4 mayo 2021]. ISSN 0034-4257. DOI 10.1016/j.rse.2015.11.032. Disponible en: https://www.sciencedirect.com/science/article/pii/S0034425715302194.

YU, J., LI, F., WANG, Y., LIN, Y., PENG, Z. y CHENG, K., 2020. Spatiotemporal evolution of tropical forest degradation and its impact on ecological sensitivity: A case study in Jinghong, Xishuangbanna, China. Science of The Total Environment [en línea], vol. 727, pp. 138678. [Consulta: 4 mayo 2021]. ISSN 0048-9697. DOI 10.1016/j.scitotenv.2020.138678. Disponible en: https://www.sciencedirect.com/science/article/pii/S0048969720321951.

ZEB, A., HAMANN, A., ARMSTRONG, G.W. y ACUNA-CASTELLANOS, D., 2019. Identifying local actors of deforestation and forest degradation in the Kalasha valleys of Pakistan. Forest Policy and Economics [en línea], vol. 104, pp. 56-64. [Consulta: 4 mayo 2021]. ISSN 1389-9341. DOI 10.1016/j.forpol.2019.04.005. Disponible en: https://www.sciencedirect.com/science/article/pii/S1389934118301849.

ZHAO, J., MA, J. y ZHU, Y., 2019. Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing. Global and Planetary Change [en línea], vol. 182, pp. 103010. [Consulta: 4 mayo 2021]. ISSN 0921-8181. DOI 10.1016/j.gloplacha.2019.103010. Disponible en: https://www.sciencedirect.com/science/article/pii/S0921818118307045.