Consideraciones silvícolas para la producción de postes en plantaciones de Pinus radiata D. Don en Chile

Contenido principal del artículo

Patricio Corvalán Vera

Resumen

La producción de postes en Chile se realiza escogiendo árboles especialmente seleccionados para ese objetivo, sin embargo, la silvicultura que masivamente se aplica está orientada a la producción simultánea de rollizos podados, aserrables y pulpables. La silvicultura para la producción específica de postes en Chile es un tema complejo técnicamente, no abordado hasta la fecha, cuya descripción y análisis es lo que se intenta esbozar en esta revisión. Para ello, se analizaron los requerimientos técnicos de los postes en cuanto a tamaño, forma del fuste, nudos, engrosamiento nodal, rectitud, grano en espiral y resistencia, los que se relacionaron con las variables del sitio, densidad del rodal, genotipo, poda, raleo y edad de cosecha. Del análisis de las variables se concluyó que se requiere una silvicultura de alta densidad con plantas multinodales en sitios de regular a mala calidad, pero que genere madera de alta densidad con una poda baja y un raleo de selección.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Corvalán Vera, P. (2020). Consideraciones silvícolas para la producción de postes en plantaciones de Pinus radiata D. Don en Chile. Revista Cubana De Ciencias Forestales, 8(2), 375–391. Recuperado a partir de https://cfores.upr.edu.cu/index.php/cfores/article/view/521
Sección
Artículos de revisión
Biografía del autor/a

Patricio Corvalán Vera, Facultad Ciencia Forestales y de la Conservación de la Naturaleza Departamento Gestión Forestal y de su Medio Ambiente, Universidad de Chile

Ingeniero Forestal (1977) y  Magister en Ciencias Forestales (2008) de
la Universidad de Chile. Mis principales líneas de Investigación han sido:
Mensura forestal, Modelos forestales, Biometría y Optimización

Citas

BAMBER, R.K., BURLEY, J. y COMMONWEALTH AGRICULTURAL BUREAUX, 1983. The wood properties of Radiata Pine [en línea]. Slough: Commonwealth Agricultural Bureaux. ISBN 978-0-85198-516-9. Disponible en: https://www.worldcat.org/title/wood-properties-of-radiata-pine/oclc/60087638.

BI, H. y TURNER, J., 1994. Long-term effects of superphosphate fertilization on stem form, taper and stem volume estimation of Pinus radiata. Forest Ecology and Management [en línea], vol. 70, no. 1, pp. 285-297. [Consulta: 26 febrero 2020]. ISSN 0378-1127. DOI 10.1016/0378-1127(94)90094-9. Disponible en: http://www.sciencedirect.com/science/article/pii/0378112794900949.

BÖSCH, M., ELSASSER, P., ROCK, J., WEIMAR, H. y DIETER, M., 2019. Extent and costs of forest-based climate change mitigation in Germany: accounting for substitution. Carbon Management, vol. 10, no. 2, pp. 127-134. ISSN 1758-3004. DOI 10.1080/17583004.2018.1560194. Recuperado de: https://www.tandfonline.com/doi/abs/10.1080/17583004.2018.1560194

CARPENTER, P.M., 1995. Posts and Poles. Forestry Handbook [en línea]. New Zealand. Hammond: Institute of Forestry, Christchurch, Disponible en: https://books.google.com.cu/books?id=YVteNzkhHYoC&pg=PA763&lpg=PA763&dq=Posts+and+Poles.+In+Forestry+Handbook&source=bl&ots=3UB_98VpoE&sig=ACfU3U0m4ilST-Qfl-SWYUwk5JvucTkwQ&hl=es-419&sa=X&ved=2ahUKEwjvsf-C_O_nAhUpnuAKHfVdCKQQ6AEwC3oECAgQAQ#v=onepage&q=Posts%20and%20Poles.%20In%20Forestry%20Handbook&f=

CARSON, M.J. y INGLIS, C.S., 1988. Genotype and location effects on internode length of Pinus radiata in New Zealand. New Zealand Journal of Forestry Science, vol. 18, no. 3, pp. 267279. Recuperado de: https://www.semanticscholar.org/paper/GENOTYPE-AND-LOCATION-EFFECTS-ON-INTERNODE-LENGTH-Carson-Inglis/a1244d665a6d648060a4f1f5d5280c1f7c0801bf

CARTER, R.E., MILLER, I.M. y KLINKA, K., 1986. Relationships Between Growth Form and Stand Density in Immature Douglas-fir. [en línea]. S.l.: The Forestry Chronicle, pp. 5. DOI 10.5558/tfc62440-5. Disponible en: https://scite.ai/reports/relationships-between-growth-form-and-0QAKw0.

CERDA, G. y W. WOLFE, R.W., 2003. Bending strength of Chilean radiata pine poles. Forest Products Journal [en línea], vol. 53, no. 4, pp. 61-65. Disponible en: https://www.semanticscholar.org/paper/Bending-strength-of-Chilean-radiata-pine-poles-Cerda-Wolfe/9313eac93276a616041695a75a434a017c39202a.

CHEE, A.A., FARRELL, R.L., STEWART, A. y HILL, R.A., 1998. DECAY POTENTIAL OF BASIDIOMYCETE FUNGI FROM PINUS RADIATA. Proceedings of the New Zealand Plant Protection Conference [en línea]. S.l.: New Zealand Plant Protection Society (Inc.), pp. 235-240. DOI 10.30843/nzpp.1998.51.11659. Disponible en: https://www.researchgate.net/publication/265985513_Decay_potential_of_basidiomycete_fungi_from_Pinus_radiata

CORVALÁN, P. y BOWN, H., 2013. Respuesta en crecimiento, calidad de madera y mejoramiento de suelos como consecuencia de la aplicación de biosólidos en rodales juveniles y adultos de Pino Radiata en el Centro Forestal y Experimental Tanumé, VI Región. Informe Final. Chile: Facultad de Ciencias Forestales y de Conservación de la Naturaleza. Universidad de Chile. Santiago.

COWN, D., 1974. Comparison of the effects of two thinning regimes on some wood properties of radiata pine. New Zealand Journal of Forestry Science [en línea], vol. 4, pp. 540-51. Disponible en: https://www.scionresearch.com/__data/assets/pdf_file/0009/58689/NZJFS431974COWN540_551.pdf

COWN, D. J., 1974. Wood density of radiata pine its variation and manipulation. New Zealand journal of forestry [en línea], vol. 19, no. 1. [Consulta: 26 febrero 2020]. ISSN 0028-8284. Recovered from: http://agris.fao.org/agris-search/search.do?recordID=US201303099792

COWN, D.J. y MCCONCHIE, D.F., 1983. Radiata pine wood properties survey (1977-19820) (No. Folleto 10757). 1983. S.l.: Forest Research Institute. Wellington, New Zealand. Recovered from: https://scion.contentdm.oclc.org/digital/collection/p20044coll6/id/100/

COWN, D., 1983. Wood density as an indicator of the bending properties of Pinus radiata poles. New Zealand Journal of Forestry Science [en línea], vol. 13, no. 1, pp. 87 99. Disponible en: https://www.researchgate.net/publication/257409601_Wood_density_as_an_indicator_of_the_bending_properties_of_Pinus_radiata_poles.

COWN, D., 1996. Cross grain effect on tensile strength and bending stiffness of radiata pine structural lumber. New Zealand Journal of Forestry Science [en línea], vol. 25, no. 2, pp. 256- 262. Disponible en: https://www.researchgate.net/publication/257409539_Cross_grain_effect_on_tensile_strength_and_bending_stiffness_of_radiata_pine_structural_lumber.

COWN, D.J., YOUNG, G.D. y KIMBERLEY, M.O., 1991. Spiral grain patterns in plantation-grown Pinus radiata. New Zealand Journal of Forestry Science [en línea], vol. 21, no. 2-3, pp. 206-216. [Consulta: 26 febrero 2020]. ISSN 0048-0134. Disponible en: https://www.cabdirect.org/cabdirect/abstract/19930668108.

ERASMUS, J., KUNNEKE, A., DREW, D.M. y WESSELS, C., 2018. The effect of planting spacing on Pinus patula stem straightness, microfibril angle and wood density. Forestry [en línea], vol. 91, no. 3, pp. 247-258. DOI 10.1093/forestry/cpy005. Disponible en: https://www.researchgate.net/publication/326982276_The_effect_of_planting_spacing_on_Pinus_patula_stem_straightness_microfibril_angle_and_wood_density.

FENTON, R. y FAMILTON, A., 1961. TENDING PINUS RADIATA FOR OPTIMUM TIMBER-GRADE RECOVERY. New Zealand Journal of Forestry [en línea], vol. 83, no. 3, pp. 415-39. Disponible en: https://www.researchgate.net/publication/265743912_TENDING_PINUS_RADIATA_FOR_OPTIMUM_TIMBER-GRADE_RECOVERY.

FERNÁNDEZ, M.P., BASAURI, J., MADARIAGA, C., MENÉNDEZ-MIGUÉLEZ, M., OLEA, R. y ZUBIZARRETA-GERENDIAIN, A., 2017. Effects of thinning and pruning on stem and crown characteristics of radiata pine (Pinus radiata D. Don). iForest - Biogeosciences and Forestry [en línea], vol. 10, no. 2, pp. 383. [Consulta: 26 febrero 2020]. ISSN 1971-7458. DOI 10.3832/ifor2037-009. Disponible en: https://iforest.sisef.org/contents/?id=ifor2037-009

FRANCIS, L. y NORTON, J., 2006. Australian Timber Pole Resources for Energy Networks. A review. Department of Primary Industries and Fisheries [en línea], Disponible en: http://era.daf.qld.gov.au/id/eprint/3071/.

FUNDACIÓN CHILE, 2005. Tablas auxiliares de producción. Simulador de árbol individual para Pino radiata (Pinus radiata D. Don): Arquitectura de copa y calidad de madera [en línea]. 2005. S.l.: Fundación Chile. Disponible en: https://bibliotecadigital.infor.cl/handle /20.500.12220/7848

GORDON, A. y GRAHAM, J.D., 1986. Changes in Pinus radiata stem form in response to nitrogen and phosphorus fertiliser. New Zealand Journal of Forestry Science [en línea], vol. 16, no. 1, pp. 41–54. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.707.7934

GROSSMAN, G.H. y POTTER-WITTER, K., 1991. Economics of Red Pine Management for Utility Pole Timber. Northern Journal of Applied Forestry. 8(1):22-25. [en línea], vol. 8, no. 1, pp. 25. [Consulta: 26 febrero 2020]. Disponible en: https://www.fs.usda.gov/treesearch/pubs/12282

HARRIS, J.M. y COWN, D.J., 1991. Basic Wood Properties. En: J.A. KININMONTH y L.J. WHITEHOUSE (eds.), Properties and uses of New Zealand Radiata Pine [en línea]. S.l.: Rotorua, N.Z.: N.Z. Ministry of Forestry, Forest Research Institute with assistance from the New Zealand Lottery Grants Board, c1991, ISBN 0-473-01181-6. Disponible en: https://trove.nla.gov.au/work/21073937?selectedversion=NBD8483986

HEVIA, A., ÁLVAREZ-GONZÁLEZ, J.G. y MAJADA, J., 2016. Effects of pruning on knotty core taper and form of Pinus radiata and Pinus pinaster. European Journal of Wood and Wood Products [en línea], vol. 74, no. 5, pp. 741-750. [Consulta: 26 febrero 2020]. ISSN 1436-736X. DOI 10.1007/s00107-016-1019-0. Disponible en: https://doi.org/10.1007/s00107-016-1019-0

INSTITUTO FORESTAL (INFOR, CL), 2016. Industria Forestal Primaria en Chile Período 2006-2015 [en línea]. 2016. S.l.: (INFOR, CL). Disponible en: https://wef.infor.cl/publicaciones/publicaciones.php

JACOBS, M., RAIS, A., & PREUTZSCH, H. 2020. Analysis of stand density effects on the stem form of Norway spruce trees and volume miscalculation by traditional form factor equations using terrestrial laser scanning (TLS). Canadian Journal of Forest Research, [en línea] vol 50 no. 1, p. 51-64. Disponible en: https://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2019-0121#.Xqban5lS_IU

JAYAWICKRAMA, K.J.S. y LOW, C.B., 1999. Pinus radiata selections from different regions of New Zealand differ in branch habit, form, and growth rate. New Zealand Journal of Forestry Science [en línea], vol. 29, no. 1, pp. 3-24. Disponible en: https://www.scionresearch.com/__data/assets/pdf_file/0003/17166/NZJFS291_1999_3_24JAYAWICKRAMA.pdf.

KIMBERLEY, M., WEST, G., DEAN, M.G. y KNOWLES, L.R., 2005. The 300 index - A volume productivity index for radiata pine. New Zealand Journal of Forestry [en línea], vol. 50, no. 2, pp. 13-18. Disponible en: https://www.researchgate.net/publication/275964790_The_300_index_-_A_volume_productivity_index_for_radiata_pine

KININMONTH, J.A. y WHITESIDE, I.D., 1991. Log Quality. En: J.A. KININMONTH y L.J. WHITEHOUSE (eds.), Properties and uses of New Zealand Radiata Pine [en línea]. New Zealand: Rotorua, N.Z.: New Zealand Ministry of Forestry, Forest Research Institute with assistance from the New Zealand Lottery Grants Board, ©199, Disponible en: https://www.worldcat.org/title/properties-and-uses-of-new-zealand-radiata-pine/oclc/26375272

LARSON, P. R. 1963. Stem form development of forest trees. Forest science, 9 (suppl_2), a0001-42. Disponible en: https://academic.oup.com/forestscience/article-abstract/9/suppl_2/a0001/4746569?redirectedFrom=PDF

LAVERY, P.B., 1986. Plantation forestry with Pinus radiata. New Zealand: School of Forestry University of Canterbury Christchurch. Review Papers N° 12.

LESKINEN, P., CARDELLINI, G., GONZÁLEZ-GARCÍA, S., HURMEKOSKI, E., SATHRE, R., SEPPÄLÄ, J., SMYTH, C., STERN, T., VERKERK, P.J. y EUROPEAN FOREST INSTITUTE, 2018. Substitution effects of wood-based products in climate change mitigation. [en línea]. From Science to Policy. S.l.: European Forest Institute. [Consulta: 26 febrero 2020]. Disponible en: https://www.efi.int/publications-bank/substitution-effects-wood-based-products-climate-change-mitigation

LEWIS, N.B., FERGUSON, I.S., SUTTON, W.R.J., D.G.M, D. y LISBOA, H.B., 1993. Management ofradiata pine. Australia: Inkata Press Pty Ltd/Butterworth-Heinemann. Melbourne. https://books.google.com.cu/books/about /Management_of_Radiata_Pine.html?id=7TJIAAAAYAAJ&redir_esc=y

LU, H. R., & EL HANNANDEH, A. 2017. Environmental and economic assessment of utility poles using life cycle approach. Clean Technologies and Environmental Policy, [en línea] vol 19 no. 4, p. 1047-1066. Disponible en: https://link.springer.com/article/10.1007/s10098-016-1299-4

MACLAREN, J.P., 1993. Radiata Pine Growers' Manual [en línea]. S.l.: New Zealand Forest Research Institute. Disponible en: https://scion.contentdm.oclc.org/digital/collection /p20044coll6/id/9/ .

MALINAUSKAS, A., 1999. The influence of the initial density and site conditions on Scots pine growth and wood quality. Baltic Forestry [en línea], vol. 5, no. 2, pp. 8-19. Disponible en: https://www.balticforestry.mi.lt/bf/PDF_Articles/99-5[2]/The%20influence%20of%20the%20initial%20density%20and%20site%20conditions%20on%20Scots%20pine%20growth%20and%20wood%20quality.pdf

MANLEY, B. y CALDERON, S., 1982. Growing radiata pine for poles. New Zealand Forest Service [en línea], vol. 27, no. 2, pp. 242-253. Disponible en: http://nzjf.org.nz/free_issues/NZJF27_2_1982/51351445-E8BD-4BA9-92B6-41C6072D951D.pdf

MOORE, J.R., COWN, D.J. y MCKINLEY, R.B., 2015. Modelling spiral grain angle variation in New Zealand-grown radiata pine. New Zealand Journal of Forestry Science [en línea], vol. 45, no. 1, pp. 15. [Consulta: 27 febrero 2020]. ISSN 1179-5395. DOI 10.1186/s40490-015-0046-7. Disponible en: https://doi.org/10.1186/s40490-015-0046-7

OJEDA, H., RUBILAR, R.A., MONTES, C., CANCINO, J. y ESPINOSA, M., 2018. Leaf area and growth of Chilean radiata pine plantations after thinning across a water stress gradient. New Zealand Journal of Forestry Science [en línea], vol. 48, no. 1, pp. 10. [Consulta: 27 febrero 2020]. ISSN 1179-5395. DOI 10.1186/s40490-018-0116-8. Disponible en: https://doi.org/10.1186/s40490-018-0116-8

PINKARD, E.A., 2002. Effects of pattern and severity of pruning on growth and branch development of pre-canopy closure Eucalyptus nitens. Forest Ecology and Management, vol. 157, no. 1, pp. 217-230. ISSN 0378-1127. DOI 10.1016/S0378-1127(00)00647-2. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0378112700006472

RESENDE R. T., SOARES, A. A., FORRESTER, D. I., MARCATTI, G. E., DOS SANTOS A. R., TAKAKAHASHIi, E. K., ... & LEITE H. G. 2018. Environmental uniformity, site quality and tree competition interact to determine stand productivity of clonal Eucalyptus. Forest ecology and management, 410, 76-83. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0378112717315918

SATHRE, R. y O'CONNOR, J., 2010. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environmental Science and Policy, vol. 13, no. 2, pp. 104-114. ISSN ISSN 1462-9011. DOI 10.1016/j.envsci.2009.12.005. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1462901109001804

SIEMON, G.R., WOOD, G.B. y FORREST, W.G., 1976. Effects of thinning on crown structure in radiata pine. New Zealand Journal of Forestry Science, vol. 6, no. 1, pp. 57-66. Disponible en: https://www.scionresearch.com/__data/assets/pdf_file/0004/58936/NZJFS611976SIEMON57-66.pdf

STÅHL, E.G., PERSSON, B. y PRESCHER, F., 1990. Effect of provenance and spacing on stem straightness and number of stems with spike knots in Pinus sylvestris L. - northern Sweden and countrywide models. En: Num Pages: 16 [en línea]. Report. Uppsala: Swedish University of Agricultural Sciences. [Consulta: 27 febrero 2020]. 184. Disponible en: https://pub.epsilon.slu.se/4155/.

SUTTON, W.R.J., 1968. Initial spacing and financial return of Pinus radiata on coastal sands. New Zealand Journal of Forestry, vol. 13, no. 2, pp. 203-18. Disponible en: http://nzjf.org.nz/free_issues/NZJF13_2_1968/A8FFCE6C-C2CD-4901-9672-72353EECB1FF.pdf

TETTEY, U. Y. A., DODOO A., & GUSTAVSSO, L. 2019. Effect of different frame materials on the primary energy use of a multi storey residential building in a life cycle perspective. Energy and Buildings, 185, 259-271. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0378778818306741

WALFORD, G. y CHAPMAN, J.B., 2010. Evaluation of the strength of shaved steamed Pinus radiata poles. New Zealand Journal of Forestry Science, vol. 40, pp. 83-90. Disponible en: https://www.researchgate.net/publication/297142054_Evaluation_of_the_strength_of_shaved_steamed_Pinus_radiata_poles

WANG, C. S., TANG, C., HEIN, S., GUO, J. J., ZHAO, Z. G., & ZENG, J. 2018. Branch development of five-year-old Betula alnoides plantations in response to planting density. Forests, 9(1), 42. Disponible en: https://www.mdpi.com/1999-4907/9/1/42

WATT, M.S. y TRINCADO, G., 2017. Modelling the influence of environment on juvenile modulus of elasticity in Pinus radiata grown in Chile. Forest Ecology and Management, vol. 400, pp. 238-245. ISSN 0378-1127. DOI 10.1016/j.foreco.2017.06.006. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0378112717305637

WEST, P. W., & SMITH, R. G. B. (2020). Effects of tree spacing on branch-size development during early growth of an experimental plantation of Eucalyptus pilularis in subtropical Australia. Australian Forestry, 1-7. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/00049158.2020.1715016

WU, H., IVKOVIÆ, M., GAPARE, W., MATHESON, A., BALTUNIS, B., POWELL, M. y MCRAE, T.A., 2008. Breeding for wood quality and profit in Pinus radiata: A review of genetic parameter estimates and implications for breeding and deployment. New Zealand Journal. Disponible en: https://www.researchgate.net/publication/279710782_Breeding_for_wood_quality_and_profit_in_Pinus_radiata_A_review_of_genetic_parameter_estimates_and_implications_for_breeding_and_deployment

WANG, Y., BODIG, J. 1990. Strength-grading method for wood poles. Journal of Structural Engineering 116(11): 2952-2967. Disponible en: https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9445%281990%29116%3A11%282952%29